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APPLYING THE VARIATIONAL-GRID METHOD OF THE
SUPPORTED SHELLS CALCULATION

Ua VY nmaniif poOOTi pO3TIAAAETHCA METOAUKA PO3PAXYHKY MiJKPIMJICHUX ITOJIO-
ruX 00OJIOHOK, sIKa 3aCHOBaHA Ha BUKOPUCTAHHI METOJiB HEJIIHIHHOTO IIporpamy-
BaHHS, & caMe METOJy M0 KOOPJWHATHOTO CITYCKY, TIPH PO3B'SI3aHHI 3aBIaHHS Mi-
HiMi3allii MOBHOI MOTEHIIMHOI €Heprii CHCTeMU Ha CKIHYEHHOBUMIPHOMY ITPOCTOP1
JOMYCTUMHX TepeMilieHb. [t moOynoBr CKiIHUEeHHOBUMIPHOI 3a/1a4i BUKOPUCTO-
BYBQJIMCSI TPUKYTHI CKIHYEHI €JIeMEHTH JIJIs 1MoyIoroi odonouku. byma gociimkena
301KHICTh PillICHHS.

Ru B ,Z[aHHOI>'I pa60Te paccMaTpuBacTCA MCTOAMKA paCuCTa IMOAKPCIIIICHHBIX I10JIO-
Tux O6OHO‘I€K, KOTOpas OCHOBAaHA HAa UCIIOJIL30BAHHWU MCTOAOB HEIIMHEITHOT O npo-
rpaMMHUpPOBaHHus, a UMCHHO MCTOAa IOKOOPAWHATHOI'O CITyCKa, IIPU PCIICHUU 34a-
Jadyl MUHUMHA3AIUN IIOJIHON MOTCHIHAIbLHOM SHEPruu CUCTECMblI HA KOHCUHOMCP-
HOM IIPOCTPAaHCTBE AOIYCTUMBIX HepeMeH_ICHI/II‘/'I. [[J'IH IMOCTPOCHHUA KOHCUYHOMCEP-
HOHM 3amadyd HCHOJIL30BAIHCH TPEYroJIbHBIC KOHCYHBIC JJICMCHTBI IJIA IIOJIOTOM
o6oouku. bruia HCCJICAOBAHA CXOAUMOCTb PCIICHUS.

Introduction

The literature on the theory of shells shows a number of variants of the
statics and dynamics equations for ribbed shells from. The classification of most
of these variants is produced by the methods of A. I. Lur’e and V. E. Vlasov [1].
These approaches are based on combining equations that describe deformation
of the shell (in accordance with Kirchhoff's hypothesis) and deformation of the
rods (in accordance with the hypothesis of rigid sections). A theory of ribbed
shells has a number of contradictions, presented by the fact that deformation of
ribbed shells is described by the twelfth-order equations with a number of terms
that have no meaning in the mechanical theory of shells. As an example, there
are fourth-order derivative of tangential displacements; equations of the theory
of ribbed shells are conjugated and have nonelliptic type.

Statement of the problem and basic relations

The method of reducing the ribbed shell is used, when we have a large
number of frequently spaced ribs. It is clear that in this case the stress-strain
state near the edges is distorted. There is a number of the unresolved questions:
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it is not clearly defined criteria of applicability, in some cases the formulas for
determining of the reduced stiffness are absent or don’t have sufficient justifica-
tion (for example, an oblique grid edges); there are no recommendations for the
irregular arrangement of the ribs. That is why, only the methods that take into
account the discrete setting are considered. Difficulties of analytical solutions
are caused by the presence of explosive parameters in functions of shell stiff-
ness. In this regard, the following areas were defined:

1. The searching for analytical solutions, for example, using the delta function
in trigonometric series, which have a pulsed character and take into account
jumps and breaks in the desired functions. It was noted that in contrast to the
smooth shell the system of algebraic equations is obtained for the coeffi-
cients of series terms decomposition even with simple support it is compati-
ble due to non-orthogonality of the trigonometric functions of discrete ar-
gument with arbitrary stiffness and ribs location.

2. In considering the ribbed shell as a contact problem it is used the dismem-
berment to a smooth shell and underpin ribsor smooth panels and edges are
allocated and joined together. For example, in the shells with parallel ribs
system and normal to the two hinged sides the solution is sought in the form
of a single trigonometric series and then contact conditions along the lines of
ribs for every smooth portion are performed. Here, as for all analytical solu-
tions, the limitations in applicability of the method are determined by the
function selection difficulties of certifying a different boundary conditions.
The analytical methods of the solution for the cross-ribs system are more
complicated.

An application of numerical analysis methods for the calculation of ribbed
shells is available from a number of disadvantages of analytical solutions. A
numerical solution method allows us to take into account different boundary and
conjugation conditions, the presence of ribs, and etc.

Let us consider the basic relations. Using the Lagrange principle of possi-
ble displacements we have

SII=0. (1)

It is possible to obtain the equation of stiffened shell equilibrium and stat-
ic boundary conditions. In the case of thin membranes the deformation is pre-
sented as [1]

€ = Yxz = Vyz = 0
Ex = Exo + 2,
€y = &y t+ Z%y ' 2)
Yxy = Yxyo T ZZXny
Components £,£,,0Yxyo Delong to the middle layer. In the case of sloping
shells we have
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Yayo = dy Ox xyW Ly 0x0y)

where k,, ky, k,, are the curvature of shell surface.

By substituting equation (2) (3) into (1) for a three-dimensional elastic
body and by integrating a shell thickness in the range from + % t to— % t we vec-
tor variational equation for smooth thin elastic shells is obtained

f J (Nxﬁsxo + Ny8eyo + SeyoSYxyo + MySy, + My5 +

(4)
+2M,, 8y, ) ABdadB = f j (X8U + YSV + Z8W) ABdadB,

X, Y, Z — are the intensity of the components of the total external load on the
shell,

W, — is area of the middle surface of the shell. For sloping shell A~ B = 1
and da = dx, df3 = dy (Fig. 1),

2(¢) o P

Figure. 1. The shell fragment with ribs
here is
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A and B are the coefficient of the first quadratic form of the middle sur-

face of the shell in curvilinear orthogonal coordinates a, 3.The dependence, that
is corresponding to the usual hypotheses of thin shells was adopted:

A—A(1+Z)\
= R L
B=B 1+Z |
)

At the integrals of the form

orfis ) (10 2)e

y

N

in expression (7) we used a simplification

(1 v 2 ) (1+ z )~1
R, R,

Accounting (Calculating) of these terms would lead to a more accurate
expression for the effort (8) than the accuracy of the initial assumptions of the
theory of shells. From equation (4) the variation equations for the curved beams
can be obtained as a pure case. For example, for curvilinear beams with the axis

0;, which lies in a plane zoa, we obtain torsion and bending in two planes [1, 2],
taking into account the longitudinal deformation energy,

.[(NiSSOL‘ + Mlisxli + Mzinzl. + HLSSXl)Ada =

()
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X;, Y;, Z;are the intensity components of total external load that are applied to

the beam axis
aU;

€io = a + kai
aZWi
X1 = T 2
azvi
X2i = T g2
_ a(pri
X O0x

@yp ;1S a twist angle.

\
N; = EF;gi
My; = Eqixq;

My; = ElLyy,;
Hi = GIKpin'

y,

(6)

Dependencies (6) are given for the case of a curvilinear beam with the axis OX.
Similar equations and dependencies will be for a curvilinear beam with
the axis OY, which lies in a plane zof3 [2]

j (N;Bejo + My;Sy, ; + My, + HjSSX].) Bdp =

= j(xjsuj +Y;8V; + Z;8W;) Bdp

Where are
oV,
EjO = W + kyW]

aZWj

X1 =~ dy2

62Uj

Xa2j =~ 9y?2

_ 00

\
N, = EFjgjo

My = ElLjx,;

sz = EIZ]XZJ

Hj = Glipjx;

J

(7)

' (8)

If the beams are ribs for shell reinforcing (Figure 1), the conditions of de-
formation continuity between the ribs and the shell on the basis of the hypothe-
ses of direct normal and incompressibility of fibers have the form:

Wi=W
ow
w=u=Gge
ow
M=V
_aw

®; dy

Wi =W N

ow
uj=u— ]a
ow }

ow
<Pj=a J

©)

The ribs are arranged eccentrically with respect to their median surface,
n - is the distance from the axis of the beam to the middle surface of the shell.
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For ribs on the inner surface of the shell the magnitude C is taken with the
Sign «-».

Methods of solutions

The variational equation for thin elastic shell, that supported by ribs i-th
and j-th directions will look like

n m n m
5V+Z5Vi+26vj—6T—26Ti+z6T,-=0 (10)
i=1,2 j=1.2 i=1,2 j=12

Where V, V;, V;are the potential energy of deformation of smooth shell
and ribs, T, T;, T; are the potential of the external forces that are applied to the
smooth shell and ribs, m and n the number of ribs respectively of i-th and j-th di-
rections. m and n are the numbers

This sum includes summands of so many equations as there are ribs of
corresponding directions. The analytical solution of ribbed shells state is ob-
tained in simple cases of supporting, i. e. with boundary conditions of Navier
type. In this case, the displacement functions are represented as a Fourier se-
ries [3, 4]. To solve practical problems with more complicated conditions of fix-
ing it is necessary to apply numerical methods. Currently, the most popular is
the finite element method [5-7]. The main stages of the decisions are: the split-
ting of the shell structure on the elements; drawing up the resolving equations by
the method of the beginning of possible movements; definition of nodal dis-
placements, strains and stresses. However, despite the effectiveness of finite el-
ement method in the calculation of shells, there are a number of difficulties as-
sociated with the formation, storage and operating with the global stiffness ma-
trix. To avoid these difficulties in this work a campaign based on the variational-
grid method of formation the full functionality of the potential energy of the sys-
tem and minimizing it by coordinate wise descent method is applied [8]. In con-
structing the variational-grid schemes a functional of the system (10) for the fi-
nal measure space of admissible functionsQ, has the form:

1
a(vh)zza(vh’vh)_f(vh); v, €€ (11)
and variational problem is replaced by approximate
U, €€, 9(uy,) = infvhegh o) (12)

which is also has the unique solution. There is a convergence of approximation
solution u, €Q, to an exact ueQ, if an equation is performed:

lim, _ou—u,|, =0 (13)
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The solution is searched as follows by coordinate-wise descent method.

Let v :(U'f,....,uﬁ) Is a vector of nodal displacements in current approxima-
tion, then the next approaching being built as:

" =0"+A"e, i=1..,N (14)

The magnitude A" is determined from the conditions of maximum of
functional decreasing
OAD

ST 0 (15)

In practice relaxation an iterative process continues until the ratio
Hx"H/HG"H becomes less than a certain, predetermined number € > 0. The choice

of last ) is performed so that the iterative process error was approximately equal
to the error of displacement approximation 0(h*). Thus, the criterion adopted as
'Stop' is written as follows:

In practice relaxation an iterative process continues until the ratio
HX"H/HG"H becomes less than a certain, predetermined number e > 0. The choice

of this number is performed so that the iterative process error was approximate-
ly equal to the error of displacement approximationO(h®). Thus, the criterion
adopted as 'Stop' is written as follows:

|

T=xu <€ (16)

o]

whereHX"H,HG"H are the norms of vectors increments and displacement on k-th it-

eration. For approximation of displacements the linear polynomials for tangen-
tial displacements and incomplete cubic polynomial for deflection were used in
work. To investigate the effectiveness of this approach the comparative data in
solving the problem of bending the shell by finite element method (MFE) and by
method of coordinate wise descent (MCWD)(Table 1) were obtained.

Table 1.

The values of the maximum deflection of sloping shell with different grids

Number of | Wma*10°(m)
L (m) R(m) elements MCWD | MFE A%
100x100 9,558 10,22 6,5
150x150 9,326 9,86 54
0.85 08 200x200 9,228 9,74 4,9

250x250 9,186 9,62 4,5
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Number of | Wpa*10° (m) 0
L (m) RM | elements MCWD | MFE A%
100x100 7,446 7,9 5,7
0,65 0.6 200x200 7,142 7,5 4.8
Conclusions

In this paper we propose an approach for the calculation of the stress-
strain state of supported shells which is based on the variational-grid method of
constructing a finite-functional of potential energy and the next minimization of
it by iterative method of coordinate descent. The application of this approach
makes it possible to avoid the difficulties deals with the formation, storage and
operating with a global matrix of the rigidity and allows to solve the problem of
large dimension using only PC memory.
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