УДК 539.3

О. М. Чемерис

КОЛИВАННЯ ЕЛІПТИЧНИХ МЕМБРАН

Вступ

Цільні та з отвором еліптичні мембрани зустрічаються в різного типу діафрагм, пружин, підвісок. Методика рішення задач по визначенню частот власних коливань для таких мембран приведені в роботах [1] - [2]. В роботі [3] на основі методів Релея-Рітца та коллокацій знайдено частотний параметр при значенні величини ексцентриситету 0.8, який в [4] не визначався. Результати обчислень частотного параметра для цільної еліптичної мембрани при різних значеннях ексцентриситету приведені в роботі [4], які також ввійшли в довідник [5]. Інших результатів по визначенню частотного параметра цільної еліптичні мембрани в літературі не виявлено. Відсутні також дані по визначенню частотного параметру еліптичної мембрани з отвором.

Мета досліджень

В роботі ставиться задача визначення частотних параметрів цільної еліптичної мембрани при симетричних коливаннях при різних значеннях ексцентриситету. Складання частотного рівняння для визначення частот коливань мембрани з отвором та визначення частотного параметра при різних значеннях ексцентриситету внутрішнього та зовнішнього еліпсів.

Дослідження

Рівняння коливань розтягнутої мембрани матиме такий вигляд:

$$N\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)w + m\frac{\partial^2 w}{\partial t^2} = 0, \qquad (1)$$

де *W* – нормальні переміщення точок пластинки,

т – маса пластинки на одиницю площі,

N – погонна розтягуючи сила,

Якщо0 колова частота коливань, то *W* змінюється з часом як $\cos \omega t$ і рівняння (1) матиме вигляд,

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) w + k_1^2 w = 0$$
(2)

Між прямокутними *x*, *y* та еліптичними ортогональними координатами ξ, η існує залежність:

 $x + iy = h\cosh(\xi + i\eta), \quad (x = h\cosh\xi \cdot \cos\eta, \quad y = h\sinh\xi \cdot \sin\eta),$

де 2*h* – відстань між фокусами еліпса,

а, b – півосі еліпса,

 $e = \sqrt{1 - (b/a)^2}$ – його ексцентриситет.

В даному випадку маємо для різних h систему еліпсів $x^2 / \cosh^2 \xi + y^2 / \sin^2 \xi = h^2$ (рис. 1, *a*), які перетинаються системою гіпербол $(x^2 / \cosh^2 \eta - y^2 / \sin^2 \eta = h^2)$. При c=1 еліпс переходить в лінію (рис. 1, *b*), а при e=0 еліпс переходить в коло (рис. 1, *c*).

В еліптичній системі координат рівняння (2) при $k_1^2 h = 2q$ матиме вигляд:

$$\frac{\partial^2 w}{\partial \xi^2} + \frac{\partial^2 w_1}{\partial \eta^2} + 2k^2 (\cosh 2\xi - \cos 2\eta) w_1 = 0$$

$$w(\xi, \eta) = \psi(\xi) \cdot \phi(\eta)$$
(3)

Рівняння (3) матиме вигляд:

 $\varphi \cdot d^{2}\psi / d\xi^{2} + \psi \cdot d^{2}\varphi / d\eta^{2} + 2q(\cosh 2\xi - \cos 2\eta) \cdot \psi\xi = 0.$ (A)
(A)
(F=10)
(F=10

Рис. 1. Випадки перетину системи еліпсів системою гіпербол

Позначимо через *а* сталу величину і запишемо це рівняння в такій формі:

$$d^{2}\psi / d\xi^{2} + (2q\cos 2\xi) \cdot \psi = -d^{2}\varphi / d\eta^{2} + (2q\cos 2\eta) \cdot \varphi = a.$$
(4)

Із даного співвідношення маємо систему канонічних рівнянь Матье

$$d^{2}\varphi/d\eta^{2} + (\alpha - 2q\cosh 2\eta) \cdot \varphi = 0, \qquad (5)$$

Інформаційні системи, механіка та керування

$$d^2\psi/d\xi^2 - (\alpha - 2q\cos 2\xi) \cdot \psi = 0.$$
(6)

Рішення (5) складають звичайні функції Матье $ce_m(\eta,q) se_m(\eta,q)$. Рівняння (6) і його рішення називають модифікованими $Ce_m(\eta,q)$, $Se_m(\eta,q)$. Це рівняння можна отримати шляхом заміни η на $i\eta$ в (5).

$$ce_m(i\eta,q) = Ce_m(\eta,q), se_m(i\eta,q) = Se_m(\eta,q)$$

74

Частинне рішення (6) складають звичайні $ce_m(\xi, -q)$, $se_m(\xi, -q)$ та модифіковані функції:

$$\begin{split} Ce_{m}(\xi,-q), & Se_{m}(\varsigma-q), \\ Ce_{a}(\xi_{o},q) &= 1 - \frac{q}{2}\operatorname{ch} 2\xi_{o} + \frac{q^{2}}{32} \cdot \operatorname{ch} 4\xi_{o} - \frac{q^{3}}{128} \left(\frac{1}{9} \cdot \operatorname{ch} 2\xi_{o} - 7\operatorname{ch} 2\xi_{o} \right) + \\ & + \frac{q^{4}}{73828} (\operatorname{ch} 8\xi_{o} - 320\operatorname{ch} 4\xi_{o}), \\ \operatorname{ch}\xi_{0} &= \frac{1}{e}, \quad e = \sqrt{1 - (b/a)^{2}}, \quad \omega = \frac{2\sqrt{q}}{ea} \cdot \sqrt{\frac{N}{m}}; \\ Ce_{1}(\xi_{o},q) &= \operatorname{ch}\xi_{o} - \frac{q}{8}\operatorname{ch} 3\xi_{o} + \frac{q^{2}}{64} \left(\frac{1}{3}\operatorname{ch} 5\xi_{o} - \operatorname{ch} 3\xi_{o} \right) - \frac{q^{3}}{512} \left(\frac{1}{3}\operatorname{ch} 3\xi_{o} - \frac{4}{9}\operatorname{ch} 5\xi_{o} + \\ & + \frac{1}{18}\operatorname{ch} 7\xi_{o} \right) + \frac{q^{4}}{4096} \left(\frac{11}{9}\operatorname{ch} 3\xi_{o} + \frac{1}{6}\operatorname{ch} 5\xi_{o} - \frac{1}{12}\operatorname{ch} 7\xi_{o} + \frac{1}{180}\operatorname{ch} 9\xi_{o} \right), \\ Se_{1}(\xi_{o},q) &= \operatorname{sh}\xi_{o} - \frac{q}{8}\operatorname{sh} 3\xi_{o} + \frac{q^{2}}{64} \cdot \left(\frac{1}{3}\operatorname{sh} 5\xi_{o} + \operatorname{sh} 3\xi_{o} \right) - \frac{q^{3}}{512} \left(\frac{1}{3}\operatorname{ch} 3\xi + \frac{4}{9}\operatorname{ch} 5\xi_{o} \right) + \\ & + \frac{1}{18}\operatorname{ch} 7\xi_{o} + \frac{q^{4}}{4096} \left(-\frac{11}{9}\operatorname{sh} 3\xi_{o} + \frac{\operatorname{sh} 5\xi_{o}}{6} + \operatorname{sh} 7\xi_{o} \right) - \frac{q^{3}}{512} \left(\frac{1}{3}\operatorname{ch} 3\xi + \frac{4}{9}\operatorname{ch} 5\xi_{o} \right), \\ Ce_{2}(\xi_{o},q) &= \operatorname{ch} 2\xi_{o} - \frac{q}{8} \left(\frac{2}{3}\operatorname{ch} 4\xi_{o} - 2 \right) + \frac{q^{2}}{384}\operatorname{ch} 6\xi_{o} - \frac{q^{3}}{512} \left(\frac{1}{45}\operatorname{ch} 8\xi + \\ & + \frac{43}{27}\operatorname{ch} 4\xi_{o} + \frac{40}{3} \right) + \frac{q^{4}}{4096} \left(\frac{1}{540}\operatorname{ch} 10\xi_{o} + \frac{293}{540}\operatorname{ch} 6\xi_{o} \right), \\ Se_{2}(\xi_{o},q) &= \operatorname{sh} 2\xi_{o} - \frac{q}{12}\operatorname{sh} 4\xi_{o} + \frac{q^{2}}{384}\operatorname{sh} 6\xi_{o} - \frac{q^{3}}{512} \left(\frac{1}{45}\operatorname{ch} 8\xi - \frac{5}{27}\operatorname{ch} 4\xi_{o} \right) + \\ & + \frac{q^{4}}{4096} \left(-\frac{37}{540}\operatorname{sh} 6\xi_{o} + \frac{\operatorname{sh} 10\xi_{o}}{540} \right). \end{split}$$

Рис. 2.

Рис. 3.

Цільна еліптична мембрана (Рис. 2) закріплена по зовнішній границі Рішення рівнянь коливань мембрани в даному випадку буде

$$w(\xi,\eta) = A_m Ce_m(\xi,q)ce_m(\eta,q) + B + B_m Se_m(\xi,q)se_m(\eta,q) + q,$$

де A_m , B_m - сталі величини. Підставляємо дане рішення в граничну умову $w(\xi_n, \eta) = 0.$

Знаходимо для *m*-ої симетричної форми коливань рівняння

$$Ce_m(\xi_o, q) = 0. \tag{8}$$

Аналогічно для *m*-ої несиметричної форми коливань маємо рівняння

$$Se_m(\xi_o,q)=0.$$

Таблиця 1.

е	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.866	0.9
$q_{_o}$	0.059	0.137	0.253	0.421	0.665	1.061	2.5	4.118	5.171
q_1	0.15	0.371	0.617	0.994	1.521	2.269	_	_	_
q_1^1	0.136	0.32	0.592	0.984	1.512	2.208	3.088	3.768	4.168

Найменші корні q_o, q_1, q_1^1 рівняння (8)

Найменші корні q_o , q_1 , q_1^1 рівняння (8) при m = 0, m = 1 наведені в табл. 1.

При обчисленні q_1 в формулі $C_1(\xi_o, q)$ враховані всі складові, при обчисленні q_1^1 в формулі $C_1(\xi_o, q)$ не врахований останній доданок з співмножником q^4 . В роботі [2] приведено обчислення q_1^1 при e=0.8 і знайдено значення 3.144, що мало відрізняється від 3.088. В табл. 2 приведено значення частотного параметра $k_i = 2\sqrt{q} / e(i=0,1)$.

Частотний параметр k обчислено по даним, приведеним в роботі [4]. В роботі [4] проведено наближене обчислення частотного параметра k_0 при e=0.866, який дорівнює 3.5 - 3.56. Частотні параметри табл. 2 для несиметричних коливань k_1 , k_1^1 відповідають відповідно значенням q_1 і q_1^1 . Інформаційні системи, механіка та керування

Таблиця 2.

			-	-		-			
е	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.866	0.9
k	2.1	_	2.162	-	2.708	_	3.75	_	5.33
k_0	2.43	2.47	2.52	2.6	2.72	2.94	3.95	4.12	5.17
<i>k</i> ₁	3.87	3.89	3.93	3.99	4.1	4.3	_	_	_
k_1^1	3.87	3.69	3.85	3.97	4.1	4.25	4.39	4.48	5.34

Частотні параметри для несиметричних коливань

Еліптична мембрана з отвором (рис. 3), що представляє собою фокальний еліпс. Нехай a_1 – півдіаметра внутрішнього отвору мембрани фокального еліпса (рис. 3). Рішення рівнянь коливань мембрани в даному випадку для симетричних коливань можна записати в формі

$$w(z,q) = A \cdot Ce_1(z,q) + B \cdot Fe_1(z,q),$$

де А, В – сталі величини,

 $Fe_1(q,z) - функція Матьє другого роду[2].$

Граничні умови $w(\xi_1, q) = 0$, $w(\xi_2, q) = 0$

Частотне рівняння

$$Ce_{1}(\varepsilon_{1},q) \cdot Fe_{1}(\varepsilon_{2},q) - Ce_{1}(\varepsilon_{2},q) \cdot Fe_{1}(\varepsilon_{1},q) = 0,$$

$$Fe_{1}(z,q) = \operatorname{sh} z - \frac{1}{8}q\operatorname{sh} 3z + \frac{1}{64}q^{2} \left(\operatorname{5sh} 3z + \frac{1}{3}\operatorname{sh} 5z \right) - \frac{1}{512}q^{3} \left(-\frac{35}{3}\operatorname{sh} 3z + \frac{8}{3}\operatorname{sh} 5z + \frac{8}{3}\operatorname{sh} 7z \right) + (1) + \frac{1}{4096}q^{4} \left(-\frac{17}{3}\operatorname{sh} 3z - \frac{343}{54}\operatorname{sh} 5z + \frac{61}{108}\operatorname{sh} 7z + \frac{1}{180}\operatorname{sh} 9z \right) + \left(q - \frac{3}{64}q^{3} - \frac{3}{256}q^{4} + \frac{31}{36864}q^{5} \right) \cdot z \cdot Ce_{1}(z,q),$$

Дe $\rho = a_1 / a$, $ε_1 = \operatorname{arch}(1 / e)$, $ε_2 = \operatorname{arch}(1 / \rho^2 \cdot e)$).

Корні частотного рівняння q та значення частотного параметра k приведені в табл. З при різних співвідношеннях діаметрів еліпсів та значень ексцентриситету більшого еліпсу.

Таблиця 3.

a_1 / a	0.2	0.4	0.6	0.8	0.2	0.4	0.6	0.8
<i>e</i> = 0.1	<i>q</i> =0.044	0.041	0.039	0.367	<i>k</i> =4.195	4.05	3.95	12.12

Корні частотного рівняння та значення частотного параметра

a_1 / a	0.2	0.4	0.6	0.8	0.2	0.4	0.6	0.8
<i>e</i> = 0.2	0.197	0.188	0.171	0.166	4.438	4.336	4.135	4.074
<i>e</i> = 0.3	0.502	0.482	0.437	0.417	4.723	4.628	4.407	4.305
<i>e</i> = 0.4	0.971	0.939	0.867	2.577	4.927	4.845	4.656	8.027
<i>e</i> = 0.5	1.522	1.491	1.426	1.392	4.935	4.884	4.777	4.719
<i>e</i> = 0.6	_	2.115	2.079	2.04	_	4.848	4.806	4.761
<i>e</i> = 0.7	2.861	2.855	2.851	2.798	4.833	4.828	4.824	4.779
<i>e</i> = 0.8	3.773	3.772	3.762	3.766	4.856	4.855	4.855	4.852

Розділ 2. Механіка

Висновки

- 1. Проведені порівняльні розрахунки для визначення симетричних коливань цільних мембран в різною величиною ексцентриситету (e = 0.1 0.8).
- 2. Визначені значення частотного параметра симетричних коливань мембран з отвором при різних значеннях ексцентриситету (e = 0.2 - 0.9).
- 3. Подальші дослідження пов'язані з визначенням частотного параметра при несиметричних коливаннях

Список використаної літератури

- 1. *Mathieu E.* Memorie sur le movement vibratorie d'une membrane de form elliptique, J. de math, pures et appliqués (Liouville), 1868. v.13.p. 137.
- 2. Мак Лахлан Теория и приложения функций Матье. ИЛ, 1954.
- 3. *Collatz l.* Eigenwertaufgaben mit technischen Anwendungen, Akad. Verlad. Lpz. 1949.
- 4. *Meixner J.*, Schafke F. W. Methiensche Funktionen und Spharoidfunktionen, Springer ,1954.
- 5. *Гонткевич В. С.* Собственные колебания пластинок. Справочное пособие. –К.: Наукова думка, 1964, -287с.