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Introduction

Flight control systems for aerospace vehicles present significant 
challenges for nonlinear flight regimes such as high-angle-of-attack flight. In 
such flight regimes linear controllers may not execute a desired performance. 
Therefore, nonlinearities of the vehicle dynamics must be taken into account by 
a control algorithm.

State-dependent Riccati equation (SDRE) methodis a heuristic technique 
that was originally proposed by Pearson [1] and independently studied by 
Cloutier et al [2]-[6]. In SDRE control a nonlinear system is parameterized to 
have a linear-like structure. The optimal control is obtained by solving a SDRE 
at every point on the trajectory.SDRE algorithm captures the nonlinearities of 
the system by converting it to a quasi-linear structure using state-dependent 
coefficient (SDC) matrices. This enables the re-computing of the controller 
gains in real time by minimizing a quasi-quadratic cost function. An algebraic 
Riccati equation (ARE) using SDC matrices is solved on-line to obtain the 
feedback gain. The non-uniqueness of the parameterization creates additional 
degrees of freedom, which may be used to enhance controller performance. It is 
important to note that methods using the SDRE can be applied to minimum as 
well as a non-minimum phase nonlinear system. Furthermore, the weight may 
be adaptively changed to avoid actuator saturation problems. 

SDRE approach is applied to a number of control problems in aerospace 
applications, such as missile control [6], [7], control for VTOL vehicles [8], [9], 
and quadrotors [10]. Another wide area of SDRE application is a spacecraft 
attitude control [11]–[14]. However, the utilization of SDRE control to fixed-
wing aircraft that operate in nonlinear flight regimes is not explored.

This paper focuses on the application of SDRE method for the flight 
control of a fixed-wing unmanned aerial vehicle. The control algorithm 
represents a tracking controller and consists of two cascaded control loops.  The 
outer loop addresses control of the attitude and altitude of the aircraft, and the 
inner loop is used to control rotational and translational velocities. In addition, a 
nonlinear compensator is implemented to account for the mismatch between the 
full vehicle dynamics and its SDC parameterization, that occurs the inner loop. 
Performance of the SDRE controller is demonstrated using a nonlinear 
simulation model of the aircraft for a high angle of attack maneuver. 



Problem Formulation

The task of this paper is to develop a nonlinear flight control system for a 
fixed-wing aircraft based on SDRE method. The controller dual-loop structure 
involves development of the SDC models of the aircraft dynamics for each loop, 
and also a nonlinear compensator that cancels miss-match between the actual 
and modeled dynamics. 

SDRE Control and SDC Parameterization

SDRE control method involves factorization of the nonlinear dynamics

0( ) ( ( ), ( )), (0) ,x t f x t u t x x  (1)

where nxR is the state vector, muR  is the input vector, 
function : .n nf R R  SDC parameterization yields the linear-like structure 
with SDC matrices given by
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where : n n nA R R  and : n n mB R R . It should be notes that SDC dynamics 
matrixA in (2) is not unique when 1n  , [15]. 

The performance cost function to be minimized is defined as
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where 1( ( )) n nR x t R  is positive semidefinite, and 2 ( ( )) n nR x t R  is positive 
definite. SDRE method requires that the pair ( ( ), ( )), ( ( ), ( ))A x t u t B x t u t must be 
pointwise stabilizable, and full state vector measurements must be available for 
feedback. 

Let ( ) ( ( ), ( )), ( ) ( ( ), ( ))A x A x t u t B x B x t u t� � . The state feedback control 
law is given by
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where ( ) ( ( ))P x P x t�  is a solution of the state-dependent algebraic Riccati 
equation, [16]
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It is important to emphasize that SDRE method is heuristic since the 
control law is suboptimal with respect to the performance index (3) and may not 
be stabilizing. Some conditions for stability of SDRE method for high-order 
systems are given in Ref. [4].

Tracking Controller and Compensator



In tracking (trajectory following) systems, it is required that the outputs 
precisely follow desired trajectories in some optimal sense. Optimality is 
reached by minimization of a given cost function. Naidu [17] and Anderson [18] 
show a linear quadratic tracking (LQT) controller that aims to maintain the 
output as close as possible to the desired reference input with minimum control 
energy for an observable linear time-varying system.

Consider a nonlinear system in the SDC form
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where ( )f x  represents a mismatch that appears as a result of the SDC 
factorization of the nonlinear system, provided that ( )f x is slowly varying and 
bounded. It is desired to control system (6) such that the desired output ( )y t
tracks the reference input ( )z t .

Reference [19] provides derivations of the infinite horizon tracking 
controller and a compensator, minimizing a performance index
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where ( ) ( ) ( )e t z t y t   is the tracking error.
The control law for system (6) can be written in the form

z f( ) ( ) ( ) ( ) ( ) ( ) ( ).u t K x x t K x z t K x f t   (8)
Corresponding controller gains are defined as
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where ( )P x  is a solution of the state-dependent algebraic Riccati equation
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The gain f ( )K x represents a compensator and is used to cancel the 
mismatch term ( )f x  in the SDC model (6).

Controller Structure and Extended Parameterization

The proposed flight control system consists of two concentric loops and 
its block diagram is shown in Fig. 1. For each control loop a separate SDRE 



tracking controller is implemented. The main advantage of this two-loop 
architecture is the reduction in the dimensions of state vectors, and 
computational cost associated with the calculation of the feedback gains.

The outer loop is used to control the angular position of an aircraft and its 
altitude. Inner loop controls the translational and rotational velocities of the 
vehicle. Control inputs include using of the elevator, ailerons, rudder and 
throttle. A reference input computing block contains a simple navigation 
algorithm that generates consistent commands to the outer loop.

Fig. 1. Control System Block Diagram

The 6 degrees-of-freedom equations of motion of an aircraft written in the 
body-fixed coordinate system are used to obtain the SDC models for the inner 
loop, [20]. Kinematic equations are utilized to relate the body fixed 
measurements to the altitude and attitude. 

The outer loop state and control vectors are defined as follows:
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where , ,    are the Euler angles, h  is the altitude; , ,u v w  are the components 
of the translational velocity, written in body axis; , ,p q r  are the components of 
the rotational velocity, written in body axis. A possible set of SDC matrices for 
the outer loop dynamics can be written as
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The outer loop state and control vectors are defined as follows:
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where a e r T, , ,     present aileron, elevator, rudder and throttle inputs, 
respectively.

A possible choice of the state-dependent dynamics and input matrices for 
the inner loop dynamics model can be obtained in thefollowing form
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The mismatch between the original dynamics and the SDC 
parameterization includes terms that appeardue to the gravitational acceleration 
is modeled as a slowly varying external input
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Simulation Results

A nonlinear simulation model of a fixed-wing unmanned aircraft is used 
to verify the performance of the designed SDRE controller. The aircraft has a 
mass of 105 kg, wing span 4.3 m, and chord length 0.53 m. The aerodynamic 
coefficients are in the form of look-up tables and include the nonlinearities such 
as drop in the aerodynamic lift coefficient and increase in aerodynamic drag 
coefficient at high values of the angle of attack. The actuators are modeled as 
first-order servos.

Selection of the weighting matrices Q  and R  is a crucial step in 

designing a SDRE controller. For the purposes of this work, matrices Q and R
are chosen to be constant diagonal matrices with the following diagonal entries
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To demonstrate effectiveness of the designed flight control system in 
flight regime that covers the nonlinear regions of the aerodynamic lift 
coefficient curve, a level flight at a high angle of attack is simulated.
Commanding a high pitch angle and holding the altitude constant allows 
achieving this flight regime. The reference pitch attitude is set to 18 deg and a 
required altitude is 1000 m. Roll and yaw angles are commands are zero. The 
update frequency for the controllers’ gains is 2 Hz.

The aerodynamic lift coefficient versus angle of attack plot is shown in 
Fig. 2, from which it may be observed that the stall value is around 10 deg.



Fig. 2. Lift Coefficient vs Angle of Attack

The angle of attack response is given in Fig. 3, from which it can be 
observed that the aircraft operates at the high angle of attack flight regime, 
which corresponds to the nonlinear region in the aerodynamic lift curve. Pitch 
angle and altitude responses in Fig. 4 show that a level flight condition is 
achieved despite of a small steady state altitude error.

Fig. 3. Angle of Attack Fig. 4. Pitch Angle and Altitude

Responses of the inner loop states that include linear and rotational 
velocity components are shown in Fig. 5. Thrust and elevator responses are 
presented in Fig. 6. 

Time histories of inner and outer loop controller gains are given in 
Fig. 7 - 11, and show that controller’s gains are re-adjusted according to the 
flight regime, ensuring sufficient tracking performance of the controller.

Fig. 5. Linear and Angular Velocities 
Components 

Fig. 6. Elevator Position and Thrust



Fig. 7. Inner Loop Controller Gain K Fig. 8. Inner Loop Controller Gain zK

Fig. 9. Inner Loop Controller Gain fK Fig. 10. Outer Loop Controller Gain 
K

Fig. 11. Outer Loop Controller Gain zK



Conclusions

In this paper, design of SDRE flight control system for a fixed-wing 
aircraft that operates in a nonlinear flight regime is presented. We introduce a 
dual-loop structure of the controller that allows decreasing dimensions of the 
state vectors and therefore reducing the order of SDC parameterization models. 
Flight control system utilizes a tracking algorithm and includes a nonlinear 
compensator for the gravity terms that are not taken into account by the 
parameterized models. The simulation results illustrate effectiveness of the 
proposed approach that utilized a single model the vehicle for the entire flight 
envelope, thus, eliminating need for linearization and gain scheduling.

Acknowledgments

This work is supported by the Scientific and Technological Research 
Council of Turkey (TUBITAK) within 2215-Ph.D. Fellowship Program.

References

1. Pearson J. D. Approximation Methods in Optimal Control, Journal of 
Electronics and Control, 13, pp. 453-469, 1962.

2. Mracek C. P., Cloutier J. R. and D’Souza C. A. A New Technique for 
Nonlinear Estimation, Proc. IEEE International Conference on Control 
Applications, pp. 338-343, Dearborn, MI, September 15-18, 1996.

3. Cloutier J. R., D’Souza C. N. and Mracek C. P. Nonlinear Regulation and 
Nonlinear Hinf Control via the State-Dependent Riccati Equation 
Technique, Proc. International Conference on Nonlinear Problems in 
Aviation and Aerospace, Daytona Beach, FL, May 1996.

4. Mracek C. P. and Cloutier J. R. Control Designs for the Nonlinear 
Benchmark Problem via the State-Dependent Riccati Equation Method, 
International Journal of Robust and Nonlinear Control, 8, pp. 401-433, 1998.

5. Cloutier J. R., Mracek C. P., Ridgely D. B., Hammett K. D. State Dependent 
Riccati Equation Techniques: Theory and Applications, Notes from the 
SDRE Workshop Conducted at the American Control Conference, 
Philadelphia, 1998.

6. Mracek C. P. and Cloutier J. R. Full Envelope Missile Longitudinal 
Autopilot Design Using the State-Dependent Riccati Equation Method, Proc. 
AIAA Guidance, Navigation, and Control Conference, New Orleans, LA, 
1997.



7. Cloutier J. R. and Stansbery D. T. Nonlinear Hybrid Bank-to-Turn/ Skid-to-
Turn Autopilot Design, Proc. AIAA Guidance, Navigation and Control 
Conference, Montreal, Canada, August 2001.

8. Bogdanov A. et al., SDRE Flight Control For X-Cell and R-Max 
Autonomous Helicopters, Proc. IEEE Conference on Decision and Control, 
IEEE, Atlantis, Paradise Island, Bahamas, pp. 1196-1203, 2003.

9. Guo R., Wu A., Zhang X. Improved SDRE Control for an Unmanned 
Helicopter Based on Multi-Timescale Dynamics Model, Proc. 8th World 
Congress on Intelligent Control and Automation, pp. 2476-248, Jinan, 
China, July 6-9, 2010.

10. Voos H. Nonlinear State-Dependent Riccati Equation Control of a Quadrotor 
UAV, Proc. IEEE International Conference on Control Applications, pp. 
2547-2552, Munich, Germany, October 4-6, 2006.

11. Parrish D. K., Ridgely D. B. Attitude Control of a Satellite Using the SDRE 
Method, Proc. American Control Conference, pp. 942-946, Albuquerque, 
New Mexico, June, 1997.

12. Luo W., Chu Y-C. Attitude Control Using the SDRE Technique, Proc. 
International Conference on Control, Automation, Robotics And Vision, pp. 
1281-1286, Singapore, December 2002.

13. Kayastha S., Tekinalp O., Ozgoren M. K. Quaternion Based State Dependent 
Riccati Equation Control of a Satellite Camera on Piezoelectric Actuators, 
Proc. AIAA Astrodynamics Specialist Conference, Toronto, Canada, August 
2010.

14. Abdelrahman M. et al. Magnetic Torque Attitude Control of a Satellite 
Using the State-Dependent Riccati Equation Technique”, International 
Journal of Non-Linear Mechanics, vol. 46, pp. 75817771, 2011.

15. Cimen T. State-Dependent Riccati Equation (SDRE) Control: A Survey, 
Proc. 17th IFAC World Congress, pp. 3761-3775, Seoul, South Korea, 2008.

16. Cimen T. Systematic and Effective Design of Nonlinear Feedback 
Controllers via the State-Dependent Riccati Equation (SDRE) Method, 
Annual Reviews in Control, vol. 34, pp. 321751, 2010.

17. Naidu D. S. Optimal Control Systems, Boca Raton, Fla. : CRC Press, 2003.
18. Anderson B. and Moore J. B. Optimal control: Linear Quadratic Methods, 

Englewood Cliffs, N.J.: Prentice Hall. 8, 1989.
19. Prach A., Tekinalp O. Development of a State Dependent Riccati Equation 

Based Tracking Flight Controller for an Unmanned Aircraft, Proc. AIAA 
Guidance, Navigation, and Control Conference, Boston, MA, August 19-22, 
2013.



20. Etkin B. Dynamics of Atmospheric Flight, New York: Wiley, 1996.


