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System identification

System identification is the process of determining an adequate 
mathematical model on the basis of input-output data.

The aim of identification is numerical values calculations of mathematical 
model parameters of the process or object on the basis of input and output 
signals gathered during identification experiment. 

The identification task is to estimate process parameters. The parameter 
estimation is experimental determination of parameters values which direct 
dynamic behavior of the process when the structure of the model is known [4].

System identification consists the following steps: 
 model type and structure postulation

 model parameter estimation method determination 

 identification experiment design (input and output data determination, input 
function selection, measurement methodology determination) 

 experiment realization and data logging

 model parameter calculations

 results analysis and verification [6].
There are two major identification types: on-line and off-line 

identification. On-line identification is operated during the process parameters of 
which are to be identified. In this case in every time step parameters are 
estimated so the changes during the process are taken into account in 
identification. This type of identification is called adaptive or recurrent 
identification. In case of the first one model structure can be changed but in the 
second one, the model structure must be determined before the identification and 
it remains during the whole process. Both of this identification types can lead to 
adaptive control which respond to the process dynamics. Off-line identification 
makes the parameters values calculation on the basis of previously gathered data 
so it can be used in control with model of the system but it cannot react to the 
changes in the process. 

In respect to identification experiment identification can be active or 
passive. In case of active identification the experiment is planned and 
determined input signal is provided for the object. Passive identification is 
proceeding during the system exploitation [7].

There are different approaches to process identification result from 
process or object inside the structure knowledge. First approach is identification 



without using the physical model of the process and equations describing 
proceeding phenomena. In this case input and output signals are assumed to be 
known but identified process or object is treated as so called black box. 
Identification without interfere in process structure is called black-box 
identification. But if during the identification there are used laws ruling 
considered process or the principle of work of the system and on this basis the 
physical and mathematical model are determined, then the grey-box 
identification is used [6]. 

Identification is possible in time and frequency domain. In this paper the 
time domain is discussed.

System models

A real system can be described with the assistance of physical, 
mathematical and simulation models. The physical model of considered system 
is its idealization by replacement real system elements by ideal ones. 
Constrained assumptions are given and insignificant for considered phase of 
research features are neglected. The physical model should return the most 
important features of the real system. The mathematical model is the physical 
system description using mathematical language. If the mathematical model is 
written in program form, then it is called simulation model. 

Using different criterion following types of models can be listed: static 
and dynamic models, linear and nonlinear, continuous and discrete. Dynamical 
model reflect system dynamical properties and changes in considered system 
proceed in time. Static model examine considered object in steady state that 
means assuming external influence is stable in time. In case of continuous 
models it is assumed that time is changing in continuous way so the all values of 
time derivative set is uncountable. Model parameters values are determined in 
optional time moments. Continuous model is mathematically described by 
differential and partial differential equations. In discrete models time has only 
discriminated values so the all values of time derivative set is countable. Model 
parameters values are determined in determined discrete time moments. Discrete 
model is described by difference equations. Nonlinear models are described by 
nonlinear differential or difference equations while linear models are in form of 
linear difference or differential equations systems and linear algebraic equations. 
Very often nonlinear models are simplified to linear ones because large number 
of identification methods can be used for linear models only [3], [4], [8]. 

Table 1.

AR model (AutoRegressive model )

 € ( )AR AR ARy v θk k

   ( 1), ( 2), ... , ( )k y k y k y k n      ARv      1 2, , ... , na a a
  ARθ



ARX model (AutoRegressive model with eXogenous input)

 € ( )ARX ARX ARXy v θk k

   € €( 1), ... , ( ), ( 1), ... , ( )k y k y k n k k n        ARXv ,

 1 1, ... , , , ... ,n na a c c
   ARXθ

MAmodel (Moving Average model) (FIR)

 € ( )MA MA MAy v θk k

   ( ), ... , ( )k u k d u k n d   MAv ,      0 , ..., nb b
 MAθ

MAX model (Moving Average model with eXogenous input)

 € ( )MAX MAX MAXy v θk k

   € €( ), ... , ( ), ( 1), ... , ( )k u k d u k n d k k n       MAXv ,

 0 1, ..., , , ... ,n nb b c c
   MAXθ

ARMA model (AutoRegressive Moving Average model)

 € ( )ARMAy v θ ARMA ARMAk k

   ( ), ..., ( ), ( 1), ( 2), ... , ( )k u k d u k n d y k y k y k n         ARMAv

 0 1 2, ... , , , , ... ,n nb b a a a
    ARMAθ ,

ARMAX model (AutoRegressive Moving Average model with eXogenous 
input)

 € ( )ARMAX ARMAX ARMAXy v θk k

  


€( ), ..., ( ), ( 1), ... , ( ), ( 1), ... ,

€( )

k u k d u k n d y k y k n k

k n

         

 
ARMAXv

 0 1 1, ... , , , ... , , , ... ,n n nb b a a c c
     ARMAXθ ,

where:  v k – input vector; θ – coefficients vector ;  €y k – output vector;

0 ,..., nb b ; 1 ,..., na a ; 1,..., nc c – weighting coefficient; n – model order 
(number of time moments in which input signal was measured); d – delay 
discrete value.

Linear model assumes linear dependence between input signal v(k) and 
output signal y(k) in k moment. When some process is considered, input signal 
is a vector of the fallowing form: 

   1 2( ), ( ),..., ( ) mv k v k v k v k . (1)

For every following vector term there is corresponding coefficient from 
coefficients vector  1 2, , ..., m    . Occurring noises, which values are not 

known, are taken into consideration by ( ) k element. 
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(2)

   1 2( ), ( ), ..., ( )mk v k v k v kv            1 2, , ... ,
T

m   θ . (3)

Coefficients vector  1 2, , ... ,
T

m   θ is not known and determining of 

it is the identification aim. Coefficients values determined for the model 

1 2
€ € € €, , ... ,

T

m
     θ  differs from these from the real process. These differences 

are named model error and it is described as the difference between process real 
and model output signal: 

€€( ) ( ) ( ) ( ) ( )e y y y v θ   k k k k k . (4)

Most commonly used are so called regression models. In Table 1 there are 
gathered input vectors  v k , coefficients vectors θand output vectors  €y k  of 

mostly used linear regression models [4].

Aircraft model

Another type of models besides regression ones, are state-space models of 
the following form [2]:
 state equation:

( ) ( ) ( )x A x Bu  t t t (5)

 output equation: 

( ) ( ) ( )y Cx Du t t t , (6)

where: ( )x t – vector of state variables,

( )y t – vector of output variables,
A – the state matrix,
B – the input matrix,
C – the output matrix,
D – the direct matrix.

When airplane systems are considered, the output variables are assumed 
to be the state ones and that leads to simplification: ( ) ( )y xt t .

In literature, motion of the airplane is treated in simplified way as two 
separate cases: longitudinal and lateral motions. The longitudinal motion may be 
described by state equation of the form:
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while the lateral-directional state equation is :
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where: , ,x y z – axial drag force, side force, normal lift force components,

, ,l m n – rolling, pitching, yawing moment components,
, ,p q r – roll, pitch, yaw rate,
, ,u v w – axial, lateral, normal velocity components,
,  – roll and pitch angle respectively,
, , ,    – elevator, aileron, rudder displacement and engine thrust.

Identification methods

In the paper identification methods commonly used for aircraft 
identification in the time domain are discussed. The most general is Maximum 
Likelihood method (ML). It uses the fallowing description of the system:

 ( ) ( ), ( ), x t f x t u t ,     0 0( ) x t x , (9)

 ( ) ( ), ( ), y t g x t u t . (10)

Output equation: 

( ) ( ) ( )  k k kz t y t G v t , (11)

where: x – 1xn column vector of state variables,

u – 1un control input vector,

y – 1yn system output vector,

 – 1qn vector of system parameters,

,f g – general nonlinear real-valued functions,

( )kz t – discrete measurements of the model output ( )ky t ,
k – discrete time index,
( )kv t – 1vn  measurement noise vector.



In ML method it is assumed that the measurement noise is characterized 
by a sequence of independent Gaussian random variables with zero mean and 
identity covariance . The elements of process noise distribution matrix F and 
the initial conditions 0x  are unknown. Also G (measurement noise distribution 
matrix) is unknown. Searched unknown parameter vector is: 

0     
TT T Tx . (12)

In case of aircraft identification there are the following assumptions:
 the input signal  ku t  is independent of the output signal,

 the measurement errors  ( ) ( ) k k kv t z t y t at different time points are 

statistically independent and they are assumed to be distributed with zero 
mean and covariance matrix R: 

 ( ) 0kE v t ;     ( ) ( )  T
k l klE v t v t R , (13)

 there is only measurement noise in the system, the process noise is neglected 
[5].

ML estimates are obtained by minimization of the negative logarithm of 
the likelihood function called cost function  ,J R :
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(14)

When measurement error covariance matrix R is known, the cost function 
reduces to:
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k k k k
k

J z t y t R z t y t . (15)

As an optimization method the Gauss-Newton method and modifications 
Levenberg-Marquardt method are commonly used in case of aircraft parameter 
identification [5], [6].

One of ML method simplifications is called Equation Error Method 
(Regression Method) which consists all types of Least Squares Techniques. 
They minimize a cost function defined directly in terms of an input-output 
equation. The cost function is based on matrix algebra operations. In 
identification of 6 DOF object, especially aircrafts, the most commonly used are 
Ordinary Least Squares, Weighted Least Squares and Total Least Squares 
methods. In OLS the independent variables are assumed to be without error and 
noise while dependent variables have uniformly distributed noise. WLS method 



is an extension of LS which takes into consideration and explains residuals. But 
one of its disadvantages is that while measurements errors and noise in the 
independent variables are present, the WLS method yields asymptotically biased 
and inconsistent estimates. Another extension of LS is Total LS method which 
deals with noise in the independent variables [5].

First, the general Least Squares idea is briefly discussed. The error can be 
obtained also in matrix form: 

   Y X . (16)

By minimizing the sum of the residuals squares, the LS estimates of the 
unknown parameters  are obtained. The cost function is defined as:
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(17)

The minimum of the cost function  J  is obtained by setting the gradient 

of  J  with respect to  to zero because the error   k is a linear function.
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     =>       € 
TT TX X X Y . (18)

The estimated parameters are calculated from: 

  1€ 
  T TX X X Y . (19)

The variation of LS is Weighted Least Squares method, where matrix with 
weights W  is added. Instead of minimizing the error  T  like in LS, the  TW
factor is minimized. After this change, the cost function is:
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(20)

The estimates are obtained from: 

  1€ 
  T TX WX X WY . (21)

The Total Least Squares method allows the noise in the independent 
variables to be accounted for. It is very strong advantage in comparison to LS 
which yields biased estimates in the presence of systematic errors and noise in 
the independent variables. 

The equation (16) in TLS method is rewritten as: 



    Y X (22)

and after few transformations as: 

    0
1 1

                     
X Y X , (23)

where:  X X Y – the compounded data matrix of size  1 qN n ,

     – the compounded noise vector.

The compounded matrix can be written in following way: 

    TX Y U V , (24)

where:  1 2 1, , ... , nqdiag 
      – diagonal matrix of singular values such 

that 1 2 1... nq    ;

U , V – the left and right singular matrices.

The smallest of the singular values  1 2 1, ,...,   nq which is qn +1 the 

one, corresponds to the minimum. The solution is obtained from the last column 
of V, which corresponds to the smallest singular value: 

  

v

, (25)

where:  – the last element;
v – the vector of the first qn elements of the last column of V. 

Another LS type technique is Instrumental Variable method (IV). 
Introduced so-called instrument variables are responsible for canceling out the 
effect of correlated noise.  z k  can be strongly correlated with the independent 

variables  x k but it cannot be correlated with an equation error   k .That leads 

to the statement that     TE z k x k is a positive definite matrix and 

     0 E z k k . (26)

The estimation parameters are obtained from the equation:

  1€ 
  T TZ X Z Y , (27)

where Z – instrumental variables matrix. 
The main difficulties in case of this method is finding an appropriate set 

of such variable Z .
Many of EEMs can be used for real-time identification after some 

simplifications and assumptions. Adaptive algorithms that are based on the EEM 



and can be easily implemented for real-time model parameter determination are 
called Recursive Methods (RM). They utilize the data point-by-point as they 
become available. They cater for systems with time-varying parameters. 
Requirements of computer memory are small when we deal with these methods 
because storage of past data is not required. That’s make them suitable for 
online implementation even on a small onboard computer. But they have also 
some limitations. Unfortunately there may be problem with slow convergence of 
standard RPE methods (ex. RLS –Recursive Last Squares method) which may 
not be adequate for real-time fault detection or to detect sudden changes in 
dynamics. The convergence can be improved by incorporating a forgetting 
factor to discard  older data but it would cause increased noise sensitivity. 
Although a wrong choice of this factor results in estimates oscillating around the 
true values. Also problems may occurs because of lack of or limited information 
content pertaining to dynamic motion for example control and motion  variables 
could be below the noise level during steady level flight. RPE methods do not 
verify data colinearity [5], [6], [7].

The RLS algorithm can be summed up as:

     € € €1 ( 1) ( 1) ( 1)           
Tk k K k y k x k k ; (28)
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  T

P k x k
K k

x k P k x k
; (29)

         1 1 1    TP k P k K k x k P k . (30)

If there is a need of faster adaptation with time after using RLS method, 
another possibility is Recursive Weighted Least Squared, in which past 
information are quickly discarded. Forgetting factor , which introduces an 
exponentially decaying weights on the past measurements, is used in such cases. 
Smaller values of   neglect more and more data points that are from the past. 
The minimized cost function is described as: 
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Other real-time methods are Filtering Identification Methods (FIM). The 
most commonly used is Kalman Filter (KF) for linear system and Extended 
Kalman Filter (EKF) for nonlinear ones. In Kalman Filter the linear system of 
followed form is considered [1]: 

1 1x F x v   k k k ,     z H x w  k k k , (32)



where: F – state matrix, the same for every step (k), H -observation matrix; 

constant for every step (k), vk , wk – noise vectors of white-noise with zero 

average and covariance matrixes Qk , Rk .
The algorithm consist two stages: prediction and actualization. At the 

beginning, starting values are assumed (state vector 0€x and error covariance 

matrix 0P ) for time value t0.
Prediction stage consists: 

(1) Next step state vector prediction: 

1€ €x F x
 k k . (33)

(2) Next step error covariance matrix of state vector prediction:

1P F P F Q
  T

k k k . (34)

Actualization stage consists steps:
(1) Kalman gain matrix calculations: 

1( )K P H H P H R   T T
k k k k . (35)

(2) Predicted in step (1) state vector actualization on the basis of current 
measurement data:

€ € €( )x x K z H x   k k k k k . (36)

(3) Predicted in step (2) state error covariance matrix actualization:

( )P I K H P k k k . (37)

KF is easy to implement. During the calculations state vector accuracy is 
estimated (Pk covariance matrix).The major disadvantage is implementation to 
linear systems only. There may be also difficulties with estimation of state 
vector error covariance matrix Qk before starting the algorithm. Important 
limitation result from the assumption of white-noise in the system.

In case of EKF, nonlinear systems may be identified, which is the major 
advantage of this method but there is a necessity of functions from state and 
observation equations linearization to obtain Jacobi matrix. Calculations of this 
matrix are complicating the algorithm [1], [3]. 

There are many more methods in the time domain that can be used for 
identification for example all kinds of Neural Networks algorithms but they 
were not discussed in this paper.

Conclusions

In the paper the system identification is discussed first as a general matter. 
Different types of identification are presented and the classification is made. 
Then models of systems in general form are described, both regression and 
state-space kind. As an example of state-space model the simplified 6DOF 



aircraft model is proposed to further identification. Then identification methods 
like ML, Recursive and Filtering methods are considered for parameter 
estimation. Further research will consist comparison of real-time method which 
can deal with state-space form of aircraft model and implementation in control 
system based on adaptive identification. 
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