14
IndpopmaniiiHi cucTeMHu, MeXaHiKa Ta KepyBaHHA

UDC 599.3

DOI: http://doi.org/10.20535/2219-3804212019197603
I. T. Selezov?, Yu. V. Korolevich?,.

SOLITARY WAVE PROPAGATION IN ELASTIC PLATE ON THE
WINKLER FOUNDATION

Ua Mu po3riasgaeMo HOBY 3ajady, 1100 3HAHTH OJHO-COJITOHHUN PO3B’S30K IS
B3a€EMOJIII MPYKHOI MiIacTUHU 13 ¢yHnamenToM Binknepa. Ilepenbauaerscs, 110
IJIACTUHA XapaKTEPU3YEThCS MPYXKHO-HENIHIMHUMU BIIACTUBOCTSIMH, SIK1 ONHCY-
I0TbCSA T€OMETPUYHO HETHIMHUMHU AeopMalisiMi. Y 1bOMY BUIAJIKY Ta JESIKUMHU
MPUMYIIEHHIMH, 11100 T03/10BXHI Aedopmaliii He OynM BpaxoBaHl, MU OTPUMYEMO
Jlarpan>kiaH, 110 BiAnoBigae kiacuyHid moneni Kipxroda nmonepeyHux KoiIMBaHb
iacTUHU. JlJis BIATIOBITHOTO PO3B’SI3yBajbHOTO PIBHSHHS 3HAWJIEHO PO3B 30K Y
KJIacl aMILTITYyIHO MOJYJIbOBAaHUX CHUTHATIB. 3a JOMOMOTOI peryispusalii ¢op-
MaJbHUX aCUMIITOTHYHUX PO3KIAJIB OTpUMaHO HediHiiHe piBHsSHHS Llpexainrepa,
0 BHU3HAYa€e aMIUTITYAy y TEpIIOMY MOPSIAKY MaiocTi. MU OTpHMYEMO OJHO-
COJIITOHHMM PO3B 30K BIATOBIIHO JI0 MIpKYBaHb Ta pe3yjibTarTiB, OTpuMaHux A0-
noBilieM Ta 1H., Hetoemowm, 3axaposum Ta [llabatom. IcHye Garato cuctem mupo-
KOTO 3aCTOCYBaHHS y PI3HHMX Tally3sX, sIKI MOXKYTh BKJIIOYATH TaKi €JIeMEHTH. Y
3B’SI3KY 13 IIUM HaIlla CTATTsI PO3TIsAae MpoOIeMy B3aeMOIIT MPYKHOT TUIACTUHH 13
dbyngamenTom Binknepa. Jliniitna npoGiema Oyna Brepiie Ty:Ke YiTKO pO3TJISTHY-
ta y Kypci C. I1. Tumomenko «MinHICTh MaTepiatiBy», T. 1 1 T. 2, mix yac poOOTH y
KITII. 3 Toro gacy kKypca, Kpaioro 3a 1ei, He 0yJ10 HalucaHo.

Ru MsI paccMaTpuBaeM HOBYIO 3a/iady, 4TOObl HATH OJHO-COJIMTOHHOE pEIICHHE
JUIS B3aUMOJICHCTBUS YIIPYroil MIIaCTHUHBI ¢ ocHOBaHUEeM Bunkiepa. [Ipennonarae-
TCSl, UTO IUIACTUHA XapaKTepU3YETCsl yIPYro-HeIUHEHHBIMU CBOMCTBAMH, KOTOPBIE
OTIHMCHIBAIOTCSA T€OMETPUUECKH HEIMHEWHbIMHU Jedopmarnusamu. B stom cinydae u
HEKOTOPBIX MPEINO0JIOKEHUAX, YTOOBI MPOI0JIbHBIE IehopMallMi HE YIUTHIBAIUCH,
MbI nosryyaeM Jlarpan:kuaH, COOTBETCTBYIOIIUIN Kiaccudyeckoit monenu Kupxroda
MOoNepeyHbIX KojeOaHuM MmiuacTUHbL. JIJis COOTBETCTBYIOLIETO pa3pelIaroliero
yYpaBHEHHUs HalIEHO pelIeHUE B Kacce aMIUTUTYIHO MOAYJIUPYEMbIX cUrHaioB. C
MOMOIIBIO0 Peryaspu3anuu GopMaibHbBIX ACUMITOTUYECKUX Pa3I0KEeHUN moy4e-
HO HenuHelHoe ypaBHeHue lllpenunrepa, omnpenensolniee aMIUIUTYLy B MEPBOM
MOPSIIKE MAJIOCTH. MBI MOJIy4aeM COJIMTOHHOE PElIeHHe B COOTBETCTBUU C PacCy-
KJICHUSMH U pe3ybTaTaMu, MolydyeHHbIMU AOnoBuueM u jp., Heroenom, 3axapo-
BbIM U [ITaGarom. CyiiecTByeT MHOTO CHCTEM OOIIMPHBIX MPUIOKEHUH B pa3HBIX
o0acTsaX, KOTOpbIe MOT'YT BKJIIOUaTh TaKHE JEMEHTHI. B CBSI3U € 3TUM Hallle coo-
OlieHre paccMaTpuBaeT NMpoOieMy B3auMOJEHCTBUS yIIPYrol MIacTUHBI C OCHO-
BaHueM Bunkiepa. JIuneiiHas 3a1aua Oblja BIEpBble OUEHb YETKO pacCMOTpEHa B
kypce C. II. Tumomenko «IIpoyHocTs MaTepuanos, T. 1 u T. 2, BO BpeMs paboThI B
KIIN. C Tex mop Kypc, Jydille 3Toro, He ObLI HAIMCaH.
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Formulation of the problem

A new problem to find the solitary solution for interaction of elastic plate
with the Winkler foundation is considered. It is assumed that the plate is charac-
terized by elastically nonlinear properties which are described by the geometri-
cally nonlinear deformations. In this case and some assumptions that longitudi-
nal deformations are not taken into account, we obtain the Lagrangian corre-
sponding to the Kirchhoff classical model of transverse bending vibrations of
plate. For corresponding resolving equation a solution is found in the class of the
amplitude modulated signals. By means of regularization of formal asymptotic
decompositions, the Schrodinger nonlinear equation, determining the amplitude
in the first order of smallness, is obtained. We obtain the solitary solution in cor-
respondence with considerations and results obtained by Abblowitz et al., New-
el, Zakharov and Shabat. There are a lot of systems of extensive applications in
various fields which include such elements. In connection with it our communi-
cation considers the problem of the interaction of an elastic plate with the Win-
kler foundation. A linear problem was first very clearly considered in the course
by S. P. Timoshenko «Strength of materials, vol. 1 and vol. 2, during his work at
the KPI. Since then no course, better than this one, has been developed.

Introduction

Several researchers have investigated solitary wave propagation in differ-
ent media, in particular soliton formation and its propagation. However the
problem for elastic plates (beams) on the elastic foundation has been investigat-
ed in a linear statement.

Our paper considers a nonlinear statement and solution so that new phe-
nomena of the wave propagation can be esablished.

Zhong et al. [1] studied space-time solitary forms in a galactic world when
spatial solitons are described by the cylindrical Korteweg — de Vries equation.
Selezov, Kryvonos and Gandga [2] treated a lot of problems of linear and non-
linear wave propagation and diffraction and solitary wave propagation.
Korolevich and Selezov [3] considered solitary wave propagation in the fluid of
variable depth and its passage to determined chaous. Grimshaw et al. [4] consid-
ered wave diffractions of solitary waves in water due to bottom nonhomogenei-
ties. Selezov I. T. [5] established that the beginning of tsunami wave is non-
determinate prediction due to an underwater earthquake is also nondeterminate
process. Selezov [6] developed an evolution equation of water waves propaga-
tion under bottom excitations and the linear and nonlinear problems of wave
diffraction. Eringen [7] presented many models of deformed continuum. Timo-
shenko [8] presented the best course of Strengh of Materials considering the lin-
ear problem of a bending beam on elastic foundation, which has been developed
first by Winkler (1867), working at the KPI at that time.Whithem [9] developed
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the theory of wave propagation and solitary wave propagation fundamentally
and considered application of the variation principle for the derivation of soli-
tary wave equations with using the Lagrangian. Blend [10] presented nonlinear
elastic models and its applications. In our paper we used his consideration in or-
der to construct the lagrangian and apply the method developed by Whithem.
Kirchhoff [11] proposed equations of bending plates and based on them the La-
grangian was simplified. Newell [12] presented a review of solitary theory
which includes a lot of results for solitary wave propagation. Ablowitz et al. [13]
considered the nonlinear evolution equations and results of construction of mod-
els. Zakharov and Shabat [14] treated solutions of solitary wave propagation.

The first part of the paper deals with geometrically nonlinear isotropic
elastic medium and it considers slow processes characterizing by small thick-
nesses in comparison with a wavelength so that neglecting by longitudinal iner-
tia yealds the Lagrange equation. As a result we obtain the equation of plate vi-
bration on the Winkler foundation. We consider the propagation of traveling
waves and find the Lagrangian and later on we consider multiply scale approach
following to the scheme from Abblowitz up to Shabat which shows the skew-
symmetric and discrete eigenvalues. One-solitary solution of the problem of
propagation of nonlinear bending waves in a plate contacting with a medium lo-
cally linearly responding to transverse deviations is derived.

Statement of the problem for the plate and the Lagrangian

We will proceed from a geometrically nonlinear formulation for an iso-
tropic elastic body (Blend, 1969) [10], (Eringen, 2002) [7], we define the Green
strain tensor through finite elastic displacements

1o
6, = §<u'“ FUY +UEUE ), (1)

and we associate the second Piola-Kirchhoff tensor with the fourth-rank iso-
tropic tensor

A
GH

' =15 + G (878" + 575" )

=a'e

()

whereA” G™ are the Lame constants, all indices run through the values 1, 2, 3
and summation is assumed over repeating indices hereinafter. For slow process-
es, the spectrum of which in the linear approximation is characterized by wave-
lengths significantly exceeding the plate thickness, it is possible to take into ac-
count the inertial term additively, and to keep the first two terms in the expan-
sion of the displacement vector in powers of the transverse coordinate and ne-
glect the shift, which corresponds to the classical Kirchhoff hypothesis (Kirch-
hoff, 1850) [11]. We restrict ourselves to processes that are independent of one



17
Po3zoin 1. InpopmangiidHI cHCTEeMH

of the planar coordinates. Integration of the energy density along the transverse
coordinate leads to one-dimensional Lagrangian
Eh Eh ph
L=—u’+ uw?> — DW2, +aw® ——(u’+w’),
1\/2 X 2(1—V2) XX XX g ( t t) (3)

where E is the Young modulus, v is the Poisson ratio, h is the plate thickness,
D is the cylindrical stiffness, « is the bed coefficient, o is the density, u and
w are the longitudinal and transverse displacements of the plate.

If the inertial term is neglected from the longitudinal displacement, from
(3) we obtain the determining system of Lagrange equations from variational
principle L =0 obtain

2u,, +(w}) =0,
ph (4)

Eh
DW,pp,, — 5 (UW, ), —aw+—w, =0.

2(1-v?) x g

We note that introducing the stress function into the Lagrangian, as well
as taking into account deformations along another planar coordinate, would lead

to the Karman system of equations with the Winkler force on the right-hand
side.

Schrodinger equation

Under the restrictions introduced above, from (4) we obtain the resolving
equation of the bending vibrations of the plate on the Winkler base in the form

Eh h
DW,,, +—4(1_vz)(wf)X — oW+ %wﬁ =0. (5)

Consider a solution in the form of traveling waves. Soliton-type for-
mations are of particular interest (Newell, 1985) [12]. The application of the
formalism of extracting the KdV equations of the hierarchy leads to a trivial so-
lution, which indicates the absence of long cnoidal and solitary waves in our
quasilinear system under consideration. Thus, a solution should be sought in the
class of amplitude-modulated processes. We apply the multi-scale method [2],
based on the formal asymptotic expansion of the desired functions and differen-
tial operators in a Taylor series in a neighborhood of the equilibrium position

w=¢"w
aza%+g%m, (6)
0, =0, +£"0y,.
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In this case, independence of fast x,, t, and all slow variables X, , T, is

assumed.
Substituting series (6) into equation (5) and grouping the terms for equal
degrees of a small parameter gives a system of equations accurate to terms of the

order 0(83) inclusive

I-W1 =0, (7)
Lw, = _( Lo x, T I—zaT1 )Wl’ 8

LW3 = _( |-1ax1 + L28T1 )WZ B { Lllail + LZZa% + Llaxz + LzaTz}Wl a
Eh 9)

-0, ((%Wl)g)m’

where
4, Ph 3 ph 2 ph
LED8X0+58%—0L L15D8X0, '—2555% |—115D8x0’ LZZEE.
From equation (7) we obtain
w, =w(X,, T, X,,T,)e’ +kc. (10)
e(wx)=0, (11)

where the phase and dispersion ratio are defined as follows
0 = kX, —o(K)t,,

e:—pﬂoo2 +Dx’ —a.
g
For the uniform suitability of the proposed expansions (uniform bounded-

ness of the terms w, and ws), it is necessary to eliminate the following terms in

the operators. In equation (8), this is possible when passing to the characteristic
coordinate system

w(X,,T,)=w(x), Xx=X,-C_T,,
e 2Dk’g
B l,® T phw '
It is also advisable to go into an arbitrary moving coordinate system in the
plane (X, T,):w(x,,T,)=w(T), T=T,-«'X,, k is an arbitrary constant sat-

C

9

isfying {O—T_x (W} the condition for the independence of variables.
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From equation (9) we obtain the corresponding condition for the ampli-

tude
Bw,, + y\wf W+idw. =0
4
B=K2D(1+2_Kj’ Y=LK2 s=i - Lo, (12)
® 4(1—v ) g

One-soliton solution

From the form of the obtained nonlinear Schrodinger equation (12)
(By>0), we can conclude that it corresponds to a scheme of Ablowitz, Kaup,

Newell, Segur (Ablowitz et al., 1973) [13] , showing that the discrete eigenval-
ues are imaginary, therefore they determine the existence of bound states with
negative energy, i.e. showing these pecularities for soliton potentials of the orig-
inal equation (12), moreover it is follow from (Zakharov and Shabat, 1979) [14]
that our operator is skew-symmetric.

The desired one-soliton solution is in the form (Newell, 1985) [12]

S C o

W= ael{(ajx{(ij_az}mo}ch1 {ax —caT +q,}, (13)

where the amplitude a, velocity of the soliton ¢ and the phase shift t, ¢, are

determined on the data of the Cauchy problem. As for the complete solution, we
note that the soliton is the limit value of the periodic solution in the form of el-
liptic functions (cnoidal waves). Therefore, the answer will not contain a period-
ic set of quasimonochromatic packets, but as a limit (under appropriate initial
conditions) a sollitary packet:

. ( scj e ) (CJZ )
w=aexpii| | k+— |X—| o+—=cc, +&°| | = | —a’ || +71,|px
2 2 2 | (14)

X ch‘l{asx —(aec, +ag’c )t + (po}.

Conclusion

The one-soliton solution in the form of solitary packet has been obtained
for an elastic plate on the Winkler foundation. Starting from geometrically non-
linear equations of isotropic elastic solid it is possible to yield determination of
the Green tensor of deformation and transition to the Kirchhoff classic theory of
bending plates. On this base the Lagrangian was obtained and Schrodinger equa-
tion were derived as resolving equation for the plate on the Winkler foundation.
Considering traveling waves for amplitude-modulated processs and the method
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of multi-scale decomposition yields transition to moving coordinate system. As
a result the existence of solitary equation was established and solitary packet
solution was obtained.
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